Models for Probability and Statistical Inference: Theory and Applications
Models for Probability and Statistical Inference: Theory and Applications
Regular price
€290,95 EUR
Regular price
Sale price
€290,95 EUR
Unit price
per
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers
Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.
Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression.
Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Author: James H. Stapleton
Publisher: Wiley-Interscience
Published: 12/01/2007
Pages: 464
Binding Type: Hardcover
Weight: 1.70lbs
Size: 9.29h x 6.45w x 1.10d
ISBN: 9780470073728
Review Citation(s):
Scitech Book News 03/01/2008 pg. 32
Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.
Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression.
Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Author: James H. Stapleton
Publisher: Wiley-Interscience
Published: 12/01/2007
Pages: 464
Binding Type: Hardcover
Weight: 1.70lbs
Size: 9.29h x 6.45w x 1.10d
ISBN: 9780470073728
Review Citation(s):
Scitech Book News 03/01/2008 pg. 32
About the Author
James H. Stapleton, PhD, has recently retired after forty-nine years as professor in the Department of Statistics and Probability at Michigan State University, including eight years as chairperson and almost twenty years as graduate director. Dr. Stapleton is the author of Linear Statistical Models (Wiley), and he received his PhD in mathematical statistics from Purdue University.
This title is not returnable