An Introduction to Maximum Principles and Symmetry in Elliptic Problems
An Introduction to Maximum Principles and Symmetry in Elliptic Problems
Regular price
$71.95 USD
Regular price
Sale price
$71.95 USD
Unit price
per
This book presents the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of nonlinear elliptic equations. Gidas, Ni and Nirenberg, building on the work of Alexandrov and Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. These recent and important results are presented with minimal prerequisites, in a style suited to graduate students. Two long appendices give a leisurely account of basic facts about the Laplace and Poisson equations, and there is an abundance of exercises, with detailed hints, some of which contain new results.
Author: L. E. Fraenkel
Publisher: Cambridge University Press
Published: 04/01/2011
Pages: 352
Binding Type: Paperback
Weight: 1.14lbs
Size: 9.02h x 5.98w x 0.79d
ISBN: 9780521172783
Author: L. E. Fraenkel
Publisher: Cambridge University Press
Published: 04/01/2011
Pages: 352
Binding Type: Paperback
Weight: 1.14lbs
Size: 9.02h x 5.98w x 0.79d
ISBN: 9780521172783
This title is not returnable