Indirect Dew-Point Evaporative Cooling: Principles and Applications
Indirect Dew-Point Evaporative Cooling: Principles and Applications
This book systematically discusses state-of-the-art dew-point evaporative cooling and provides key insights into current research efforts and future research interests. Novel energy-efficient and environment-friendly cooling technologies are essential to reduce the sharply rising energy consumption and greenhouse gas emissions and achieve carbon neutrality. Conventional air-conditioners which adopt a vapor compression cycle are neither energy-efficient nor sustainable due to the use of compressors and chemical refrigerants, as well as their intrinsic coupling of sensible and latent cooling loads. With the merits of high energy efficiency and the ability to decouple cooling loads without using chemical refrigerants, indirect dew-point evaporative cooling provides an ideal alternative solution to air conditioning in a variety of applications.
A comprehensive review of evaporative cooling and their underlying engineering challenges is included. Advanced engineering and modeling experience critical to the development of dew-point evaporative coolers are highlighted. The effective analysis techniques for dew-point evaporative coolers are documented, and their intrinsic characteristics captured by these methods are reported. Lastly, advanced dew-point evaporative cooling systems in various energy-connected applications are discussed by providing multiple case studies.
Specifically targeted at HVAC engineers, thermal scientists, and energy-engineering researchers, this book will balance fundamental concepts, industrial applications, and leading-edge research. As this book provides readers with depth and breadth of coverage, it can also be used by graduate-level students in relevant fields.
Author: Jie Lin, Kian Jon Chua
Publisher: Springer
Published: 05/27/2023
Pages: 116
Binding Type: Hardcover
Weight: 0.80lbs
Size: 9.29h x 6.22w x 0.47d
ISBN: 9783031307577
About the Author
Dr. Jie Lin is a lecturer at School of Mechanical and Aerospace Engineering, Queen's University Belfast. With a PhD dissertation in decoupled latent and sensible cooling, he has been conducting research on dew-point evaporative cooling, membrane-based dehumidification and thermal management, and extending his interests to battery energy storage such as characterization, diagnostics and modeling. He has developed significant expertise in design, model, fabrication, characterization and test of many sustainable energy devices and systems for energy conversion and storage, air conditioning, and thermal management. He has published 28 international top journals articles, including in leading journals in the field, such as Communications Engineering, Small, Energy Conversion and Management, and Applied Energy, with a current 672 citations since 2016 and 15 h-index. He has successfully been awarded the "Futures Early Career Award" twice by UK Science and Technology Facilities Council and the "Innovation/Entrepreneurship Practicum Award" by National University of Singapore. He has also served as a Guest Editor for several reputable journals in MDPI.