Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power
Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power
Author: Anthony F. Molland, Stephen R. Turnock, Dominic A. Hudson
Publisher: Cambridge University Press
Published: 08/17/2017
Pages: 626
Binding Type: Hardcover
Weight: 3.15lbs
Size: 10.00h x 7.10w x 1.10d
ISBN: 9781107142060
About the Author
Molland, Anthony F.: - Anthony F. Molland is Emeritus Professor of Ship Design at the University of Southampton. For many years, Professor Molland has extensively researched and published papers on ship design and ship hydrodynamics including propellers and ship resistance components, ship rudders and control surfaces. He also acts as a consultant to industry in these subject areas and has gained international recognition through presentations at conferences and membership of committees of the International Towing Tank Conference (ITTC). Professor Molland is the co-author of Marine Rudders and Control Surfaces (2007) and editor of the Maritime Engineering Reference Book (2008).Turnock, Stephen R.: - Stephen R. Turnock is Professor of Maritime Fluid Dynamics at the University of Southampton. Professor Turnock lectures on many subjects, including ship resistance and propulsion, powercraft performance, marine renewable energy, and applications of CFD. His research encompasses both experimental and theoretical work on energy efficiency of shipping, performance sport, underwater systems, and renewable energy devices, together with the application of CFD for the design of propulsion systems and control surfaces. He acts as a consultant to industry, and was on committees of the International Towing Tank Conference (ITTC) and International Ship and Offshore Structures Congress (ISSC). Professor Turnock is the co-author of Marine Rudders and Control Surfaces (2007).Hudson, Dominic A.: - Dominic A. Hudson is Shell Professor of Ship Safety and Efficiency at the University of Southampton. Professor Hudson lectures on ship resistance and propulsion, powercraft performance and design, recreational and high speed craft, and ship design. His research interests are in all areas of ship hydrodynamics, including experimental and theoretical work on ship resistance components, seakeeping and maneuvering, together with energy efficient ship design and operation. He was a member of the International Ship and Offshore Structures Congress (ISSC) Committee on Sailing Yacht Design and is a member of the 28th International Towing Tank Conference (ITTC) Specialist Committee on Performance of Ships in Service, having previously served on the ITTC Seakeeping and High Speed Craft Committees.